딥러닝7 [ML] GNN 훑어보기 What is Graph?그래프는 자료구조에서도 많이 나오는 키워드입니다. Node, edge로 구성되어 추상적인 개념을 다루기에 유리합니다. 소셜 네트워크, 바이러스 확산 등등의 모델링할 수 있습니다.그래프를 나타내는 matrix로는 Adjacency matrix, Degree matrix, laplacian matrix등이 있습니다. adjacency matrix는 노드 개수가 N일때 NxN의 크기를 갖습니다. i,j가 연결되어있다면 1, 아니면 0의 값을 같습니다. 따라서 symmetric한 성질을 가집니다. Degree matrix의 경우 마찬가지로 NxN의 크기를 갖고 node와 연결된 edge의 개수를 저장합니다.대각행렬의 특징을 갖습니다. Laplacian matrix의 경우 node 자.. 2025. 3. 26. Depth Foundation model 훑어보기 최근 depth foundation model들이 많이 발표되었습니다. mono camera만으로도 depth를 상당한 퀄리티로 estimation하는데요. 몇가지 모델에 대해서 알아보겠습니다. 전통의 컴퓨터비전을 이용한 방법으로는 stereo에서 Rectification(정렬)하여 epopolar condition을 만족시킵니다. 이후 disparity를 계산하고 (동일한 feature point가 두 이미지에서 차지하는 픽셀 좌표의 차이) triangulation을 이용해서 depth를 추정합니다.Z=f˙baselineDisparity 자세한 부분은 아래 포스팅 참고하세요. [SLAM] 3. 2D-2D geometry, Epipolar Geometry안녕하세요. 후니.. 2025. 1. 3. Self-Supervised Learning 훑어보기 기본적으로 Supervised Learning을 위한 Label확보는 많은 비용을 필요로 합니다. 그렇기에 representation정도는 unlabeled data만으로도 확보할수있지 않을까?하는 시작에서 나온것이 self-supervision입니다. self-supervision즉, unlabeled data를 이용해서 훌륭한 representation(feature라고 생각해도 됩니다) 을 얻고자하는 것이 self-supervision의 목적입니다. 보통 위 그림처럼 이렇게 학습한 representation을 이용해서 downstream task에 적용하여 모델을 평가합니다. (나이브하게 ssl의 정의를 정리하면 백본 네트워크를 효율적으로 학습해서 downstream작업에서 활용할 수 있는 고품질의.. 2024. 12. 13. [ML/CV] 헷갈리는 용어정리 학습 방법에 따른 분류Supervised Learning- GT label이 있는 상태에서 모델을 학습시키는 방법- 예) 고양이, 개 사진이 있으면 각각 고양이 개라는 label이 있는 경우 Unsupervised Learning- GT label이 없는 데이터로 패턴을 학습하는 방법- 예) 클러스터링, KNN -> 이상 탐지, 추천 시스템 Self-Supervised Learning- 모델이 자체적으로 label을 생성해서 학습하는 방법- 예) GPT 모델, DINO Weakly Supervised Learning- label이 약간 부족하거나 noise가 있는 데이터로 학습하는 방법 모델의 역할에 따른 분류Foundation Model- 방대한 데이터로 학습한 대규모 모델- 예) GPT-4, CLIP.. 2024. 11. 5. [NLP] LLM모델이란? (1) - fine-tune, token, language model vision에서의 foundation model, diffusion model등의 유래는 사실상 자연어 처리분야(NLP)에서 시작되었습니다. 자연어 처리 모델들이 점점 커지면서 최근에는 BERT, GPT, LLAMA, GERME, SOLAR 등의 여러 LLM모델들이 출시되고 있습니다. LLM의 시작부터 최근이야기까지 포스팅해보겠습니다. 자연어 처리 모델은 보통 document classification, sentence pair classification, named entity recongnition, question answering, sentence generation등의 과제가 있고 입력으로 자연어를 받아 임베딩과정을 거쳐 최종적으로 어떤 범주 혹은 어떤 단어일지 확률을 return하는 방식입니다.. 2024. 2. 15. [CV] Computer Vision History 3 : (segment anything , depth anything, 4M) 안녕하세요. 이번 포스팅은 image detection 시리즈 3편을 포스팅하겠습니다. 사실 단일 task의 detection은 DL computer vision에서 사실상 의미가 없는 수준이 되었습니다. 그러면서 multi-modal, foundation model을 통해 zero-shot, few-shot learning이라는 흐름으로 넘어간 상황입니다. 그렇기 때문에 제목을 detection history에서 cv history로 변경하였습니다. 최근 LLM분야에서는 huge foundation model들이 각광을 받고 있습니다. 글로벌 회사들에서 하루가 멀다하고 이런 foundation model들을 배포하고 있는대요. foundation model이란 간단하게 말하면 엄청난 huge data로.. 2024. 1. 1. 이전 1 2 다음