본문 바로가기

foundation model4

Depth Foundation model 훑어보기 최근 depth foundation model들이 많이 발표되었습니다. mono camera만으로도 depth를 상당한 퀄리티로 estimation하는데요. 몇가지 모델에 대해서 알아보겠습니다. 전통의 컴퓨터비전을 이용한 방법으로는 stereo에서 Rectification(정렬)하여 epopolar condition을 만족시킵니다. 이후 disparity를 계산하고 (동일한 feature point가 두 이미지에서 차지하는 픽셀 좌표의 차이) triangulation을 이용해서 depth를 추정합니다.$Z = \frac{f \dot baseline}{Disparity}$ 자세한 부분은 아래 포스팅 참고하세요.  [SLAM] 3. 2D-2D geometry, Epipolar Geometry안녕하세요. 후니.. 2025. 1. 3.
[Detection] Detection Foundation model 훑어보기 이번 포스팅은 detection foundation model에 대해서 살펴보겠습니다. 아래는 foundation vision mode이 어떤것들이 있는지 robolow에서 나열한 내용입니다. https://roboflow.com/model-feature/foundation-vision Top Foundation Vision ModelsTop Foundation Vision Models Foundation models are large models that you can use without prior training. You can use foundation models to auto-label data for use in training a smaller, real-time vision model.r.. 2024. 11. 5.
[NLP] LLM모델이란? (1) - fine-tune, token, language model vision에서의 foundation model, diffusion model등의 유래는 사실상 자연어 처리분야(NLP)에서 시작되었습니다. 자연어 처리 모델들이 점점 커지면서 최근에는 BERT, GPT, LLAMA, GERME, SOLAR 등의 여러 LLM모델들이 출시되고 있습니다. LLM의 시작부터 최근이야기까지 포스팅해보겠습니다. 자연어 처리 모델은 보통 document classification, sentence pair classification, named entity recongnition, question answering, sentence generation등의 과제가 있고 입력으로 자연어를 받아 임베딩과정을 거쳐 최종적으로 어떤 범주 혹은 어떤 단어일지 확률을 return하는 방식입니다.. 2024. 2. 15.
[CV] Computer Vision History 3 : (segment anything , depth anything, 4M) 안녕하세요. 이번 포스팅은 image detection 시리즈 3편을 포스팅하겠습니다. 사실 단일 task의 detection은 DL computer vision에서 사실상 의미가 없는 수준이 되었습니다. 그러면서 multi-modal, foundation model을 통해 zero-shot, few-shot learning이라는 흐름으로 넘어간 상황입니다. 그렇기 때문에 제목을 detection history에서 cv history로 변경하였습니다. 최근 LLM분야에서는 huge foundation model들이 각광을 받고 있습니다. 글로벌 회사들에서 하루가 멀다하고 이런 foundation model들을 배포하고 있는대요. foundation model이란 간단하게 말하면 엄청난 huge data로.. 2024. 1. 1.